О проекте | Помощь    
   
 
   Энциклопедия Компьютеры Финансы Психология Право Философия   
Культура Медицина Педагогика Физика Спорт Спорт
 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
 
Ба Бб Бв Бг Бд Бе Бж Бз Би Бй Бк Бл Бм Бн Бо Бп Бр Бс Бт Бу Бф Бх Бц Бч Бш Бщ Бъ Бы Бь Бэ Бю Бя
 

БЕРНУЛЛИ УРАВНЕНИЕ

Бернулли уравнение - Бернулли уравнение (интеграл Бернулли) в гидроаэромеханике - результат интегрирования дифференциальных уравнений установившегося движения идеальной (невязкой и нетеплопроводной) баротропной жидкости, записанных в переменных Эйлера. В баротропной жидкости плотность зависит только от давления р, то есть , и уравнение Бернулли имеет вид (1) где U - потенциал поля объемных (массовых) сил, действующих на жидкость, v - скорость течения, C - величина, постоянная на каждой линии тока или вихревой линии, но в общем случае изменяющая свое значение при переходе от одной линии к другой. Если потенциал U и вид функции известны, уравнение Бернулли выражается алгебраическим соотношением. В простейшем случае несжимаемой тяжелой жидкости, когда U=gh (h - высота жидкой частицы над некоторой горизонтальной плоскостью, g - ускорение свободного падения), a , имеем (2) Для этого случая уравнение было выведено Д. Бернулли (D. Bernoulli) в 1738. Умножив уравнение (2) на , получим, что сумма первых двух членов равна потенциальной энергии жидкости, а 3-й член называется скоростным напором или динамическим давлением и равен кинетической энергии движущейся жидкости. Таким образом, уравнение Бернулли в виде (2) выражает закон сохранения энергии и устанавливает связь между давлением и скоростью движущейся жидкости: если вдоль линии тока скорость увеличивается, давление падает, и наоборот. Когда в некоторых точках потока жидкости давление вследствие роста скорости должно стать ниже некоторой малой положительной величины, близкой к давлению насыщенного пара этой жидкости, возникает кавитация. В случае обратимых адиабатных течений совершенного газа с отношением удельных теплоемкостей имеем и из уравнения (1), пренебрегая влиянием силы тяжести, получим: (3) или, в силу термодинамического соотношения , где T - абсолютная температура, H-энтальпия, (4) Уравнение Бернулли для газов в форме (3) и (4) определяет параметры изоэнтропийного торможения: на каждой линии тока, которых газ достигает при v = 0. Они называются соответственно полной энтальпией, температурой торможения, полным давлением или давлением торможения и плотностью торможения. Уравнение Бернулли в форме (4) также выражает закон сохранения энергии для газов. Уравнение Бернулли используют при измерении скорости с помощью трубок измерительных и при других аэрогидродинамических измерениях. В технических приложениях для осредненных по поперечному сечению параметров потока применяют так называемое обобщенное уравнение Бернулли: сохраняя форму уравнений (2)-(4), в левую часть включают работу сил трения (гидравлические потери) и механическую работу (работу компрессора или турбины) с соответствующим знаком. Обобщенным уравнением Бернулли пользуются в гидравлике при расчете течений жидкостей и газов и трубопроводах и в машиностроении при расчете компрессоров, турбин, насосов и других гидравлических и газовых машин.